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Our Studies: Machine Learning Governance (2020)

66 firms* participated in the IIF Machine Learning Governance survey, representing a diversity of scales, 
business models, and geographies. 

A full analysis is available to participating firms and the official sector. 

* “Firms” represent banks and insurers. Firms are categorized by region according to where they are headquartered, while acknowledging 
that many have operations across multiple jurisdictions.
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Our Studies: Machine Learning in Credit Risk (2019)
60 firms * (59 banks and 1 mortgage insurer) participated in the IIF Machine Learning in Credit Risk 2nd

Edition survey

* “Firms” represent banks and insurers. Firms are categorized by region according to where they are headquartered, while acknowledging 
that many have operations across multiple jurisdictions.
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There was a 49% increase in the number of firms that either had ML models in production or active pilot 
projects.

Within the “pilot projects” group, we see an incredible 125% surge year-over-year.

Maturity of ML Applications in Credit Risk (2018-2019)
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Where the predominant 2018 usage was in Retail (with some in credit monitoring for large corporates), 
2019 has seen significant expansion in SME portfolios, a 380% increase.

Expanded usage has also continued to other sectors, particularly with the launch of new pilot projects.

Application of ML by Portfolio Type 
(2018-2019)

Machine Learning Application by Portfolio (2018-2019)
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Credit scoring and decisioning continues to be the leading area for applying these technologies, but with 
significant growth in credit monitoring and collections, restructuring, and recovering. 

Specific Areas of Usage (2018-2019)
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Firms continue to use machine learning in the model validation function, developing benchmark, or 
“challenger” models built using competing modeling approaches.

However, its main function has been for “model development” in particular for model building and 
variable selection. 

Application by Credit Risk Functions (2019)

ML use by credit risk function (2019)
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Challenges to Machine Learning Adoption (2019)
The most selected challenges in 2019 relate to supervisory understanding and consent as well as 
“explainability”, though “data quality”, “IT infrastructure-related problems”, and “availability of 
appropriately skilled staff” were often cited as the most impactful barriers to implementation.

Half of respondents picked “data quality” as a challenge. Of those 30 firms, 100% chose “multiple data 
sources and formats”, making it the most selected data quality issue encountered.  

Key Challenges of Using ML Compared to Previously 
Used Approaches (2019)*
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Machine Learning Governance Aspects and Controls

October 12, 2021



I N S T I T U T E  O F  I N T E R N A T I O N A L  F I N A N C E 11

Although 36% of firms are using their existing model risk management framework for ML, half of 
respondents indicated that a new framework for ML has been developed (16%) or is being developed 
(34%). 

Model Governance Process in Place for ML

What is the process of model governance currently in place for ML?
% of firms
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83% of all respondents have clearly articulated the roles and responsibilities of the parties in charge of the governance of 
ML models. 

“Embedding individuals with ML expertise within the model risk management” was the top answer, followed closely by 
“providing training for relevant employees” and “clearly defining the highly specialized skills/roles required for ML 
models.” 

Establishment of Roles and Responsibilities

J u n e  1 ,  2 0 1 8

What steps have been taken to establish roles and responsibilities for parties responsible for the 
governance of ML models? * 
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*Firms were able to select multiple choices. Sample of 53 FIs that answered "yes" to whether roles and responsibilities are clearly articulated in the governance for ML models.
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Firms rely on several control processes to mitigate against bias and discrimination in ML models. 

The most common selections made by firms regarding how to mitigate bias and discrimination in 
ML models were “auditing, testing and controls”, “code of ethics defined at the institution level”, 
and “excluding sensitive attributes from the beginning and not including these as part of the 
feature analysis / selection / engineering process”.

Controls Against Unfairly Biased Outcomes

What controls are in place to mitigate against ML models producing unfairly biased or discriminatory 
outcomes? *
% of firms
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* Firms were able to select as many options as appropriate.
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The most common validation methods are in-sample / out-of-sample testing followed closely by data 
quality validation and outcome monitoring against a benchmark.

Model Validation: Assessing ML Model Robustness

What model validation techniques are used to assess machine learning model robustness? *
% of firms
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